M.L. Dahanukar College of Commerce

Teaching Plan: 2023 - 24

Department: I.T. Class: M.Sc.(I.T.) Semester: I

Subject: Data Science

Name of the Faculty: Prof. Gufran Qureshi

Month	Topics to be Covered	Internal	Number of
		Assessment	Lectures
Oct	Unit 1: Data Science Introduction & Basics		14
	a. Data Science Technology Stack: Rapid Information		
	Factory		
	Ecosystem, Data Science Storage Tools, Data Lake, Data		
	Vault, Data		
	Warehouse Bus Matrix, Data Science Processing Tools		
	,Spark, Mesos,		
	Akka, Cassandra, Kafka, Elastic Search, R, Scala,		
	Python, MQTT, The		
	Future.		
	b. Layered Framework: Definition of Data Science		
	Framework, CrossIndustry Standard Process for Data		
	Mining (CRISP-DM), Homogeneous		
	Ontology for Recursive Uniform Schema, The Top		
	Layers of a Layered		
	Framework, Layered Framework for High-Level Data		
	Science and		
	Engineering		
	c. Business Layer: Business Layer, Engineering a		
	Practical Business		
	Layer		
	d. Utility Layer: Basic Utility Design, Engineering a		
	Practical Utility		
	Layer		
Nov	Unit 2: Statistics for Data Science		10
	a. Three Management Layers: Operational Management		
	Layer,		
	Processing-Stream Definition and Management, Audit,		
	Balance, and		
	Control Layer, Balance, Control, Yoke Solution, Cause-		
	and-Effect,		
	Analysis System, Functional Layer, Data Science Process		
	b. Retrieve Superstep: Data Lakes, Data Swamps,		
	Training the Trainer		

	_	
	Model, Understanding the Business Dynamics of the Data	
	Lake,	
	Actionable Business Knowledge from Data Lakes,	
	Engineering a	
	Practical Retrieve Superstep, Connecting to Other Data	
	Sources.	
	c. Assess Superstep: Assess Superstep, Errors, Analysis	
	of Data, Practical	
	Actions, Engineering a Practical Assess Superstep	
Dec	Unit 3: Data Analysis with Python & Data	14
	Visualization	
	a. Process Superstep: Data Vault, Time-Person-Object-	
	Location-Event Data Vault, Data Science Process, Data	
	Science,	
	b. Transform Superstep: Transform Superstep, Building a	
	Data Warehouse, Transforming with Data Science,	
	Hypothesis Testing, Overfitting and Underfitting,	
	Precision-Recall, Cross-Validation Test.	
	Unit 4: Machine Learning for Data Science	
	a. Transform Superstep: Univariate Analysis, Bivariate	
	Analysis, Multivariate Analysis, Linear Regression,	
	Logistic Regression, Clustering Techniques, ANOVA,	
	Principal Component Analysis (PCA),	
	Decision Trees, Support Vector Machines, Networks,	
	Clusters, and Grids, Data Mining, Pattern Recognition,	
	Machine Learning,	
Jan	Bagging Data, Random Forests, Computer Vision (CV),	04
	Natural Language Processing (NLP), Neural Networks,	
	TensorFlow.	
	b. Organize and Report Supersteps : Organize Superstep,	
	Report Superstep, Graphics, Pictures, Showing the	
	Difference	

Sign of Faculty

ML Dahanukar College

Teaching Plan: 2023 - 24

Department: <u>I.T.</u> Class: <u>MSc.(I.T.) Part-I</u> Semester: <u>I</u>

Subject: <u>Soft Computing Techniques</u>
Name of the Faculty: <u>Ms. Rasika Sawant</u>

Month	Topics to be Covered	Internal	Number of
		Assessment	Lectures
September	Unit I		02
	 a) Introduction of soft computing 		
October	b) Artificial Neural Network		22
	c) Supervised Learning Network		
	Unit II		
	a) Associative Memory Networks		
	b) Special Networks		18
November	c) Third Generation Neural Networks		
	d) Unsupervised Learning Networks		
	Unit III		
	a) Introduction to Fuzzy Logic, Classical Sets and		
	Fuzzy sets		
	b) Classical Relations and Fuzzy Relations		
December	c) Membership Function		18
	d) Defuzzification		
	e) Fuzzy Arithmetic and Fuzzy measures		
	Unit IV		
	a) Fuzzy Rule base and Approximate reasoning		
	b) Genetic Algorithm		

Sign of Faculty

ML Dahanukar College Teaching Plan: 2023 - 24

Department: <u>I.T.</u> Class: <u>MSc.(I.T.) Part-I</u> Semester: <u>I</u>

Subject: Cloud Computing

Name of the Faculty: Mr Dhanraj Jadhav

Month	Topics to be Covered	Internal	Number
		Assessm	of
		ent	Lecture
			S
Septembe	Unit I: Introduction to Cloud Computing - Introduction, Historical		10
r	developments, Building Cloud Computing Environments, Principles		
	of Parallel and Distributed Computing - Eras of Computing, Parallel		
	v/s distributed computing, Elements of Parallel Computing, Elements		
	of distributed computing, Technologies for distributed computing		
	Virtualization - Introduction, Characteristics of virtualized		20
October	environments, Taxonomy of virtualization techniques, Virtualization		
	and cloud computing, Pros and cons of virtualization, Technology		
	examples. Logical Network Perimeter, Virtual Server, Cloud Storage		
	Device, Cloud usage monitor, Resource replication, Ready-made		
	environment.		
Novembe	Unit II Cloud Computing Architecture: Introduction, Fundamental		20
r	concepts and models, Roles and boundaries, Cloud Characteristics,		
	Cloud Delivery models, Cloud Deployment models, Economics of		
	the cloud, Open challenges.		
December	Fundamental Cloud Security: Basics, Threat agents, Cloud security		10
	threats, additional considerations. Industrial Platforms and New		
	Developments: Amazon Web Services, Google App Engine,		
	Microsoft Azure.		

Sign of Faculty Sign of Coordinator

M.L. Dahanukar College of Commerce

Teaching Plan: 2023 - 24

Department: I.T. Class: M.Sc. (I.T.) Semester: I

Subject: Image Processing

Name of the Faculty: Ms. Shruti Save

Month	Topics to be Covered	Internal	Number of
		Assessment	Lectures
	Module -I		16
October	Introduction: Digital Image Processing, Origins of		
	Digital Image Processing, Applications and		
	Examples of Digital Image Processing, Fundamental		
	Steps in Digital Image Processing, Components of		
	an Image Processing System		
	Digital Image Fundamentals: Elements of Visual		
	Perception, Light and the Electromagnetic Spectrum,		
	Image Sensing and Acquisition, Image Sampling and		
	Quantization, Basic Relationships Between Pixels,		
	Basic Mathematical Tools Used in Digital Image		
	Processing		
	Intensity Transformations and Spatial Filtering:		
	Basics, Basic Intensity Transformation Functions,		
	Basic Intensity Transformation Functions, Histogram		
	Processing, Fundamentals of Spatial Filtering,		
	Smoothing (Lowpass) Spatial Filters, Sharpening		
	(Highpass)		
	Filtering in the Frequency Domain: Background,		14
November	Preliminary Concepts, Sampling and the Fourier		
	Transform of Sampled Functions, The Discrete		
	Fourier Transform of One Variable, Extensions to		
	Functions of Two Variables, Properties of the 2-D		
	DFT and IDFT, Basics of Filtering in the Frequency		
	Domain, Image Smoothing Using Lowpass		
	Frequency Domain Filters, Image Sharpening Using		
	Highpass Filters, Selective Filtering		
	Image Restoration and Reconstruction: A Model		
	of the Image Degradation/Restoration Process, Noise		
	Models, Restoration in the Presence of Noise Only		
	Spatial Filtering, Periodic Noise Reduction Using		
	Frequency Domain Filtering		
	Wavelet and Other Image Transforms:		
	Preliminaries, Matrix - based Transforms,		
	Correlation, Basis Functions in the Time - Frequency		

	Plane, Basis Images, Fourier -Related Transforms,	
	Walsh -Hadamard Transforms	
	Module-II	20
December	Color Image Processing: Color Fundamentals,	
	Color Models, Pseudocolor Image Processing, Full -	
	Color Image Processing, Color Transformations,	
	Color Image Smoothing and Sharpening, Using	
	Color in Image Segmentation, Noise in Color	
	Images, Color Image Compression. Image	
	Compression and Watermarking: Fundamentals,	
	Huffman Coding, Golomb Coding, Arithmetic	
	Coding, LZW Coding, Run -length Coding, Symbol	
	-based Coding, 8 Bit -plane Coding, Block	
	Transform Coding, Predictive Coding, Wavelet	
	Coding, Digital Image Watermarking	
	Morphological Image Processing: Preliminaries,	
	Erosion and Dilation, Opening and Closing, The Hit	
	-or -Miss Transform, Morphological Algorithms	
	Image Segmentation: Edge Detection,	10
January	Thresholding, and Region Detection: Fundamentals,	
	Thresholding, Segmentation by Region Growing and	
	by Region Splitting and Merging, Region	
	Segmentation Using Clustering and Superpixels	
	Image Segmentation Active Contours: Snakes and	
	Level Sets: Background, Image Segmentation Using	
	Snakes, Segmentation Using Level Sets. Feature	
	Extraction: Background, Boundary Preprocessing,	
	Boundary Feature Descriptors, Region Feature	
	Descriptors, Principal Components as Feature	
	Descriptors	

Sign of Faculty

M.L. Dahanukar College of Commerce

Teaching Plan: 2023 - 24

Department: I.T. Class: M.Sc.(I.T.) Part-I Semester: I

Subject: Research Methodology

Name of the Faculty: Mr. Chayan Bhattacharjee

Month	Topics to be Covered	Internal	Number of
		Assessment	Lectures
October	Unit 1: a) Introduction: Role of Business Research, Information		
	Systems and Knowledge Management, Theory Building,		14
	Organization ethics and Issues		
	b) Beginning Stages of Research Process: Problem definition,		
	Qualitative research tools, Secondary data research		
	Unit II: Research Methods and Data Collection: Survey research,		
November	communicating with respondents, Observation methods,		12
	Experimental research		
	Unit III: Measurement Concepts, Sampling and Field work:		
December	Levels of Scale measurement, attitude measurement, questionnaire		16
	design, sampling designs and procedures, determination of sample		
	size		
	Unit IV: Data Analysis and Presentation: Editing and Coding,		
	Basic Data Analysis		
	Unit IV: Data Analysis and Presentation (cont): Univariate		
January	Statistical Analysis and Bivariate Statistical analysis and differences		18
	between two variables. Multivariate Statistical Analysis.		

Sign of Faculty